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Abstrac:  
Many studies have proposed the relations between neurodegenerative diseases and diabetes 

mellitus (DM), DM promotes to cognitive impairment with aging, but its effect in Parkinson’s 

disease (PD) is not well studied. Glucagon-like peptide-1 (GLP-1), as a member of incretin 

family, has glycemic control roles. Moreover, it exerts many further effects on various tissues 

through the widespread expression of its receptor. Objective: Our aim is to investigate the 

effect of pre-existing diabetes on the severity of PD in male albino rats, and to find out if 

GLP-1 could improve symptoms of PD in the diabetic animals beside its hypoglycemic effect, 

and work out how it might do this. Methods: 75 adult male albino rats were equally divided 

into: Control, Parkinson's, Diabetic Parkinson's, Diabetic Parkinson's + low dose exenatide 

(GLP-1 receptor agonist), Diabetic Parkinson's + high dose exenatide group. Blood glucose 

and insulin, striatal dopamine, some striatal oxidative stress and inflammatory markers, and 

the catalepsy score were measured. Results: Pre-existing of diabetes before PD induction 

increase the severity of PD proved by the more significant increase in catalepsy score, and the 

more significant decrease in striatal dopamine level. GLP-1 effects extend beyond their 

hypoglycemic effects only since it has a direct neuronal anti-oxidative, and anti-inflammatory 

effect with increasing the striatal dopamine and improving the catalepsy score in a dose 

dependent manner. Conclusions: Diabetes increases the severity of impairment in PD, and 

GLP-1 improve it through its direct neuronal effect beside its indirect effect through 

producing hypoglycemia. 

Key words: Diabetes mellitus, Parkinson’s disease, Glucagon-like peptide-1, Anti-

oxidative, Anti-inflammatory 

______________________________________________________________________ 

 

Intoduction  
Parkinson's disease (PD) is one of the most 

common chronic neurodegenerative 

disorder come after Alzheimer disease, 

affecting more than 1% of the elderly 

people worldwide (Pringsheim et al., 

2014).  It is a progressive, disabling motor 

disorder, its symptoms (bradykinesia, 

rigidity, resting tremor, and postural 

instability) resulted mostly from the 

reduction in substantia nigra dopaminergic 

activity in the midbrain (Sethi 2008). 

 

In spite of the availability of multiple 

effective symptomatic drugs, there is no 

treatment for PD and all the efforts to slow 

down the neuronal cell loss were 

unsuccessful. This is may be related to the 

fact that the homeostasis of substantia nigra 

pars compacta (SNc) is susceptible to 

different environmental, cellular, and 

genetic factors which individually or 

concurrently lead to death of the cell 

overtime (Lang and Espay 2018).  

 

In the earlier 30 years, the study of the 

pathogenesis of PD has recognized a 

number of possible contributing factors, 

proposing that it has multifactorial origin. 

In addition to numeral genetic mutations, 

metabolic and nutritional factors seem to be 

complicated. Essential stages in this 

neurodegenerative pathway has been 

revealed emphasizing relations between the 

pathogenesis of PD and the mechanisms 

underlying insulin resistance development 

(Cereda et al., 2011). Whereas other studies 

stated that the pathogenic mechanisms of 

PD also include oxidative stress 

(Manoharan et al., 2016), inflammation 



MJMR, Vol. 30, No. 4, 2019, pages (56-68).                                              Eman A. Elbassuoni 

 

57                                                                                                                   Mechanism of the Neuroprotective Effect of GLP-1 in a  

                                                                                                                      Rat Model of Parkinson’s 57 with Pre-existing Diabetes 

 

(Taylor et al., 2013), and apoptosis 

(Venderova and Park 2012).  

 

Incretins are a group of Metabolic Horm-

ones that motivate the blood glucose level 

reduction (Amori et al., 2007). There are 

two main candidate molecules which carry 

out incretin criteria; the Gastric inhibitory 

peptide (GIP) and the intestinal peptide 

Glucagon-like peptide-1 (GLP-1) (Drucker 

and Nauck 2006). 

 

GLP-1 is an intestinal gut hormone secreted 

in a response to ingestion of food and 

potentiates the glucose-dependent insulin 

secretion from the pancreatic beta-cells. 

Moreover, GLP-1 suppresses glucagon 

secretion from alpha-cells, resulting in 

glucose-dependent reduction in the hepatic 

glucose production (Holst et al., 2011). 

Inddition to glycemic control improving, 

GLP-1 receptor agonists produce weight 

loss also (Gerich 2013). However, accumu-

lating data from the preclinical and clinical 

studies show that GLP-1 receptor agonists 

effects go beyond the weight reduction and 

glycemic control alone (Seufert and 

Gallwitz 2014).  

 

GLP-1 receptors present extensively in 

many tissues outside the pancreas, as the 

gastrointestinal system, kidneys, central 

nervous system and cardiovascular system, 

(Pyke et al., 2014). So, it is reasonable to 

consider that many physiological effects are 

mediated by GLP-1 receptor agonists, 

independent of their main actions of 

improving glycemic control and stimulating 

body weight loss.  

 

In the central nervous system (CNS), the 

GLP-1 action has been concerned in food 

intake regulation (Barrera et al., 2011), 

hypothalamic-pituitary-adrenal (HPA) axis 

function (Ghosal et al., 2013), activation of 

sympathetic nervous system (SNS) 

(Yamamoto et al., 2002), and visceral 

illness (Kinzig et al., 2002).  However, 

additional effects of the central stimulation 

of GLP-1 are unclear as yet, and until now 

there are many debates about its mechanism 

of action. 

  

Some clinical trials reported that drugs used 

in diabetes treatment have shown positive 

effects on neurodegenerative processes and 

on clinical outcome, regarding memory and 

cognition, and could, hopefully, be 

developed into novel therapies against PD  

and related conditions (Green et al., 2019),  

and some of them reported the protective 

effects of the GLP-1 mimetic exendin-4 in 

patients with Parkinson's disease (Athauda 

et al., 2017; Athauda and Foltynie 2018; 

Athauda et al., 2019). However, the number 

of these clinical studies is low and further 

clinical trials are needed . 

 

The aim of this work is to investigate the 

effect of preexisting diabetes induction on 

the severity of experimentally induced 

Parkinson's disease in male rats, and to 

discover if GLP-1 could reverse symptoms 

of Parkinson's disease in the diabetic 

animals beside controlling hyperglycemia, 

and work out how it might do this. 

 

Materials and Methods  

Ethics statement and animals 
The protocol of this study accepted by 

Minia University Faculty of Medicine, 

Research Ethics Committee (FMREC), and 

it executed in conformity with the National 

Institutes of Health Guide for the Care and 

Use of Laboratory Animals (Manual and 

Manual 2010). All precautions taken to 

diminish the number and suffering of 

animals used in the experiment. 

 

Seventy five (specific‐pathogen‐free) adult 

male albino Sprague–Dawley rats that 

weighing about 150–200 g were used. The 

rats received from the Faculty of Medicine, 

Minia University animal House. All rats 

housed at room temperature with normal 

light/dark cycles, water and food allowed 

ad‐libitum. Rats randomly divided into five 

equal groups as follows: 

I. Control group: vehicle-injected group 

that received daily normal saline by 

intraperitoneal injection for 28 

successive days. 

II. Parkinson's group: rats received 1-

methyl-4-phenyl-1,2,3,6-tetrahydro- 

 

https://en.wikipedia.org/wiki/Metabolic
https://en.wikipedia.org/wiki/Hormone
https://en.wikipedia.org/wiki/Hormone
https://en.wikipedia.org/wiki/Gastric_inhibitory_peptide
https://en.wikipedia.org/wiki/Gastric_inhibitory_peptide
https://en.wikipedia.org/wiki/Glucagon-like_peptide-1
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pyridine (MPTP) that dissolved in 

normal saline by intraperitoneal 

injection in a dose of 30 mg/kg body 

weight at 24 h intervals for 28 

successive days (Lee et al., 2011). 

III. Diabetic Parkinson's group: induction 

of diabetes by injection of 50 mg/kg 

streptozotocin (STZ) single intra- 

peritoneal injection (Szkudelski 2001) 

four days before the beginning of 

MPTP-induced Parkinson's. 

IV. Diabetic Parkinson's + low dose 

exenatide (GLP-1 receptor agonist) 

group:  STZ diabetic induction four 

days before the beginning of MPTP 

Parkinson's induction + treating the 

rats with 1.0 µg/kg single subcuta-

neous exenatide daily dose on the 4th 

day of STZ treatment for 28 

consecutive days (Elbassuoni 2014) 

V. Diabetic Parkinson's + high dose exen-

atide group:  STZ diabetic induction 

four days before the beginning of 

MPTP Parkinson's induction + treating 

the rats with 5.0 µg/kg single 

subcutaneous exenatide daily dose on 

the 4th day of STZ treatment for 28 

consecutive days (Elbassuoni 2014) . 

 

Induction of diabetes 
Induction of diabetes done by STZ 

(50 mg/kg) injection. It was freshly 

dissolved in the sodium citrate buffer (pH 

4.5) and intraperitoneally injected in a 

single dose (Szkudelski 2001). After four 

days of STZ injection, tail vein blood 

samples taken for blood glucose level 

assay. Rats with a fasting blood glucose 

level higher than 180 mg/DL (10 mmol/l) 

considered diabetic. 

 

Behavioral tests  
PD development detected after 28 days 

from induction with MPTP, by the 

occurrence of tremors and the observation 

of rigidity and bradykinesia in rats that 

further quantified by ‘‘Catalepsy test’’. The 

first part of this test was the grid test where 

the rat was hung on a vertical grid by its 

paws (the grid was 44 cm high and 25.5 cm 

wide with a space of one cm in between 

each wire), the time for each rat to move its  

paws or any other sort of the first 

movement recorded. The second part of the 

test was the bar test where the rat placed on 

a bar (9 cm above and parallel from the 

base) with both fore paws, the time of 

removal of the paw recorded (Alam and 

Schmidt 2004). These two test performed 

for all the rats that were included in the 

study. Many studies reported that these tests  

are sensitive methods for evaluating motor 

dysfunctions in the MPTP animal model of 

Parkinson's disease (Alam and Schmidt 

2002; Abdin and Hamouda 2008; Kim et 

al., 2010) 

 

Biochemical analyses of the blood and 

brain tissue homogenate 
At the end of the work and after performing 

the behavioral tests, all rats sacrificed; 

blood samples were immediately collected 

in 10-ml Eppendorf tubes, left to clot, then 

delivered into centrifuge tubes and 

centrifuged at 3000 rpm for 20 min; serum 

samples separated in 2-ml Eppendorf tubes 

to be used immediately as fresh samples 

(preferred) or to be stored on − 20 °C until 

used. Serum samples used to determine 

serum glucose using colorimetric assay kit 

from MyBioSource, USA, insulin level 

using ELISA kit from MyBioSource, USA.  

The brains removed quickly and washed 

using ice-cold saline. The striata of the 

hemisphere of each brain isolated, weighed, 

and homogenized using a homogenizer. 

Homogenization carried out in phosphate-

buffered saline (pH = 7.4). The homogenate 

then centrifuged for 10 minutes. The 

supernatants kept at – 80°C until the 

analysis of: dopamine using Rat Dopamine 

(DA) ELISA Kit from CUSABIO, USA; 

malondialdehyde (MDA) using colorimetric 

assay kit from MyBioSource, USA; 

Superoxide Dismutase Activity using 

colorimetric assay kit (ab65354) from 

Abcam, USA; Catalase Activity using 

colorimetric assay kit (ab83464) from 

Abcam, USA; Reduced Glutathione (GSH) 

using colorimetric assay kit (ab235670) 

from Abcam, USA; tumor necrosis factor-α 

(TNF-α) by ELISA kit from MyBioSource, 

USA; Interleukin 1 beta (IL-1β) using 

ELISA Kit (ab100768) from Abcam, USA. 
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Streptozotocin, MPTP, exenatide, and other 

chemicals obtained from Sigma–Aldrich 

Chemical Co. 

 

Statistical Analysis 
Values expressed as mean ± SEM, analyzed 

statistically using SPSS program, version 

17 (SPSS Inc., Chicago, IL, USA). One-

way analysis of variance (ANOVA) 

followed by Bonferroni's multiple  

comparisons test were applied for all 

analyses. P value less than 0.05 was 

considered statistically significant. 

 

Results 
Assessment of Motor Function 

Parkinson's group exhibited a significant 

increase in catalepsy score of either grid 

test or bar test compared to control group. 

Diabetic Parkinson's group receiving no 

treatment showed more significant increase 

in catalepsy score of either grid test or bar 

test compared to Parkinson's group. 

Treatment of Diabetic Parkinson's group 

with exenatide showed a significant redu-

ction in the catalepsy score of grid test and 

bar test in a dose-dependent way as 

compared to Diabetic Parkinson's group 

receiving no treatment. 

 

Biochemical analysis 

Serum glucose and insulin  
Parkinson's group showed no significant 

change in serum glucose and insulin levels 

compared to control group. Diabetic 

Parkinson's group receiving no treatment 

showed a significant increase in serum 

glucose level and significant decrease in 

serum insulin level compared to Parkinson's 

group. Treatment of Diabetic Parkinson's 

group with exenatide significantly decrease 

serum glucose level, and significantly 

increase serum insulin level in a dose-

dependent way when compared to Diabetic 

Parkinson's group receiving no treatment. 

 

Striatal dopamine content 
Parkinson's group showed a significant 

decrease in striatal dopamine levels 

compared to control group.  Diabetic 

Parkinson's group receiving no treatment 

showed more decrease in striatal dopamine 

level compared to Parkinson's group. 

Treatment of Diabetic Parkinson's group 

with exenatide significantly improved the 

striatal dopamine level in a dose-dependent 

way as compared to Diabetic Parkinson's 

group receiving no treatment. 

 

 Striatal oxidative stress biomarkers 
Measuring MDA level, as a stable product 

of lipid peroxidation, is a reliable tool to 

assess the extent of oxidative damage at the 

cellular level. As compared to the control 

group, there was a significant increase in 

striatal MDA level in the Parkinson's group, 

with more increase in its level in the 

Diabetic Parkinson's group. Treatment of 

Diabetic Parkinson's group with exenatide 

significantly decreased the striatal MDA 

level in a dose-dependent way as compared 

to Diabetic Parkinson's group receiving no 

treatment. 

 

The Parkinson's group exhibited a 

significant decrease in the activities of the 

antioxidant enzymes SOD, CAT and GSH 

in the striata compared to the control group, 

with more decrease in their activities in the 

Diabetic Parkinson's group. Treatment of 

Diabetic Parkinson's group with exenatide 

significantly increased their activities in the 

striata in a dose-dependent way as 

compared to Diabetic Parkinson's group 

receiving no treatment. 

 

Striatal inflammatory biomarkers 
In the present study, striatal TNF-α and IL-

1β levels were significantly increased in the 

Parkinson's group compared to the control 

group, with a more significant increase in 

the  Diabetic Parkinson's group as comp-

ared to Parkinson's group. Treatment with 

exenatide significantly decreased TNF-α 

and IL-1β levels in a dose-dependent way 

as compared to Diabetic Parkinson's group 

receiving no treatment. 
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Figure 1: Striatal oxidative stress markers in the different studied groups 

 
           Values expressed as mean ± SEM. n= 15, P < 0.05 was considered statistically significant 

a
 Significant from control group, 

b
 Significant from Parkinson's group, 

c
 Significant from 

Diabetic  Parkinson's group, 
d
 Significant from Diabetic Parkinson's + Low Dose Exenatide 

group. 

 

 

Figure 2: Striatal inflammatory markers in the different studied groups: 

 

         
 

Values expressed as mean ± SEM. n= 15, P < 0.05 was considered statistically significant 
a
 Significant from control group, 

b
 Significant from Parkinson's group, 

c
 Significant 

from Diabetic Parkinson's group, 
d
 Significant from Diabetic Parkinson's + Low 

Dose Exenatide group 

 

 



MJMR, Vol. 30, No. 4, 2019, pages (56-68).                                              Eman A. Elbassuoni 

 

61                                                                                                                   Mechanism of the Neuroprotective Effect of GLP-1 in a  

                                                                                                                      Rat Model of Parkinson’s 61 with Pre-existing Diabetes 

 

 

Table 1: Striatal dopamine level in the different studied groups: 

 

 

Parameter 

 

Control 

Group 

Parkinson's 

Group 

Diabetic 

Parkinson's 

Group 

Diabetic 

Parkinson's + 

Low Dose 

Exenatide Group 

Diabetic 

Parkinson's + 

High Dose 

Exenatide Group 

Dopamine 

(ng/ml) 

 

7.3 ± 0.7 

 

3.5 ± 0.5
a
 

 

1.2 ± 0.2 
a,b

 

 

2.8 ± 0.4 
a,c

 

 

5.4± 0.5
 a,b,c,d 

 

Values expressed as mean ± SEM. n= 15, P < 0.05 was considered statistically significant 
a
 Significant from control group, 

b
 Significant from Parkinson's group, 

c
 Significant 

from Diabetic Parkinson's group, 
d
 Significant from Diabetic Parkinson's + Low Dose 

Exenatide group 

 

Table 2: Catalepsy score in the different studied groups: 

 

 

 

Parameter Control 

Group 

Parkinson's 

Group 

Diabetic 

Parkinson's 

Group 

Diabetic 

Parkinson's + 

Low Dose 

Exenatide 

Group 

Diabetic 

Parkinson's + 

High Dose 

Exenatide 

Group 

Grid test  

(time in seconds) 6.9±0.8 29.5±4.5 
a
 49.9±5.6 

a,b
 30.8±4.8 

a,c
 16.2±2.7 

a,b,c,d
 

Bar test          

(time in seconds) 
7.4±0.9 22.6±3.7 

a
 46.3±6.4 

a,b
 31.2±3.5 

a,c
 17.7±1.8 

a,b,c,d
 

 

  Values expressed as mean ± SEM. n= 15, P < 0.05 was considered statistically significant 
a
 Significant from control group, 

b
 Significant from Parkinson's group, 

c
 Significant 

from Diabetic Parkinson's group, 
d
 Significant from Diabetic Parkinson's + Low Dose 

Exenatide group 

 

Table 3: Fasting serum glucose and fasting serum insulin in the different studied 

groups: 
 

 

Parameter 
Control 

Group 

Parkinson's 

Group 

Diabetic 

Parkinson's 

Group 

Diabetic 

Parkinson's 

+ Low Dose 

Exenatide 

Group 

Diabetic  

Parkinson's  

+High Dose 

Exenatide 

Group 

Fasting serum glucose  

(mmol/L) 
5.1±0.4 5.6 ± 0.5 22.7 ± 2.3 

a,b
 5.9 ± 0.9 

c
 5.5± 0.7 

c
 

Fasting serum insulin 

 (μIU/ml) 
33.7±1.9 34.9 ± 2.1 13.2 ± 1.3 

a,b
 35.5 ± 2.3

c
 31.9 ± 3.4 

c
 

Values expressed as mean ± SEM. n= 15, P < 0.05 was considered statistically significant. 
 a
 Significant from control group, 

b
 Significant from Parkinson's group, 

c
 Significant from 

Diabetic Parkinson's group 
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Discussion 
In the present study, the rat model of 

Parkinson's disease was induced by 

administration of MPTP that induced 

Parkinson's disease in all rats treated with it 

proved by the significant increase in the 

catalepsy score and the significant decrease 

in striatal dopamine level. It was 

established that MPTP enters the dopami-

nergic neurons through the dopamine 

transporter and induced their degeneration 

(Hirsch et al., 2003). 

 

In the Parkinson's group, striatal antioxidant 

enzyme SOD, CAT and GSH activities 

were significantly decreased, with 

significant increase in striatal MDA, a 

marker of lipid peroxidation, suggesting 

that oxidative stress involved in the 

pathogenesis of MPTP-induced Parkinson's 

disease as reported by Shi et al., (Shi et al., 

2016) ,and many post-mortem studies have 

shown that oxidative stress induces the 

antioxidant protective systems down 

regulation, including SOD, CAT, and GSH, 

and damages proteins, lipids, and DNA, 

eventually resulting in damage to the 

dopaminergic neurons in the substantia 

nigra (Maj et al., 2010). 

  

Moreover, in the present study the levels of 

the proinflammatory cytokines, TNF‐α and 

IL-1β, were significantly increased in the 

Parkinson's group. Ferger et al., (Ferger et 

al., 2004) reported that in the MPTP model 

of PD, the inflammatory reactions have 

been determined, and elevated level of the 

proinflammatory cytokines TNF‐α was 

detected. This can be explained by the 

excessive microglial activation produced by 

MPTP, proposing that neuroinflammation 

and the activated microglia are crucial in 

PD pathogenesis (Tansey and Goldberg 

2010). Microglia involved in the immune 

defense and surveillance, and it activates 

multiple proinflammatory cytokines, 

including IL-1β and TNF-α, which can 

directly induce apoptosis in the 

dopaminergic neurons (Niranjan 2014).  

 

In order to study the effect of diabetes on 

the PD-induced biochemical and motor 

impairments; diabetes induced in the 

present study by streptozotocin (STZ), a 

Glucosamine–nitrosourea compound 

derived from Streptomyces achromogenes. 

STZ damages the pancreatic β cells, 

resulting in hypoinsulinemia and hyper-

glycemia (Lenzen 2008).  

 

We found that in the Parkinson's group with 

pre-existing diabetes, there is a significant 

elevation in the catalepsy score and a 

significant decrease in striatal dopamine 

level compared to the Parkinson's group. 

These results come in line with Aviles-

Olmos et al., (Aviles-Olmos et al., 2012) 

who reported that hyperglycemia related to 

insulin resistance or hypoinsulinaemia, 

shown to decrease the basal striatal 

dopamine concentrations, this is because 

insulin receptors are represented densely in 

the substantia nigra and insulin increases 

the dopamine transporter mRNA in 

substantia nigra, it also regulates brain 

dopamine concentrations (Cereda et al., 

2013). 

 

In the present study, striatal antioxidant 

enzymes SOD, CAT and GSH activities 

were significantly decreased in the 

Parkinson's group with pre-existing 

diabetes, with significant increase in striatal 

MDA level compared to the Parkinson's 

group. These results come in line with 

earlier studies that reported that the 

activities of these antioxidant enzymes 

decreased in the diabetic brain (Alvarez-

Nolting et al., 2012; Miranda et al., 2007). 

Chronic hyperglycemia leads to oxidative 

stress with the production of reactive 

oxygen species, production of reactive 

oxygen species can also be a mechanism 

that is underlying dopaminergic cell loss in 

the hyperglycemic animals (Stranahan and 

Mattson 2011).  

 

The brain is mostly vulnerable to the 

oxidative injury due to its high rate of 

oxygen consumption, excessive production 

of reactive radicals, and high transition 

metals levels, such as iron, that catalyze 

reactive radical production. Furthermore, 

neuronal membranes are rich in the 

polyunsaturated fatty acids that are a source 

of lipid peroxidation (Ansari et al., 2008). 

Free radicals formed excessively in the 

diabetes by non-enzymatic glycation of 
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proteins, glucose oxidation, and the 

consequent oxidative degradation of the 

glycated proteins. Abnormally free radicals 

high levels, and the concurrent antioxidant 

defense mechanisms decline can lead to 

damage to the cellular enzymes and 

organelles, increased in lipid peroxidation, 

and development of insulin resistance. 

These oxidative stress consequences can 

promote the development of diabetic 

complications (Rains and Jain 2011). 

 

Increased in systemic and cerebrovascular 

inflammation considered as one of key 

pathophysiological features in diabetes 

mellitus and its vascular complications 

(Goldberg 2009). Key mechanisms of the 

hyperglycemia-induced inflammation 

include the neuronal nuclear factor kappa-

light-chain-enhancer of the activated B cells 

(NFκB)-dependent production of 

proinflammatory cytokines, inflammasome 

activation, and increased oxidative stress 

(Lee et al., 2013). These studies can explain 

the more increase in the levels of the 

proinflammatory cytokines, TNF‐α and IL-

1β that found in the present study in the 

Parkinson's group with preexisting diabetes 

compared to the Parkinson's group. 

 

Exenatide is a synthetic agonist for GLP-1 

receptor that has been approved for diabetic 

treatment with definite useful effects on 

glucose control, supposed to be mediated 

by β-cell proliferation, decreased gluconeo-

genesis, increased insulin production, and 

weight loss that follows the chronic 

stimulation of GLP-1 receptor in the 

gastrointestinal tract (Aviles-Olmos et al., 

2013). This explains the hypoglycemic 

effect of exenatide found in the present 

study in exenatide-treated group, and its 

ability to return the glucose and insulin of 

the diabetic rats to the normal level even in 

its low dose. Exenatide proved also to 

protect the β islet cells from apoptosis, 

prevent damage to the mitochondrial DNA 

encoded genes and stimulate the 

mitochondrial biogenesis (Fan et al., 2010). 

 

,Expression of GLP-1 receptor is broadly 

detected in various cells and organs, 

including the heart, kidney, lung, endo-

thelial cells, hypothalamus, astrocytes, 

microglia, and neurons besides pancreatic 

beta-cells (Arakawa et al., 2010; Fujita et 

al., 2014; Goke et al., 1995; Iwai et al., 

2006; Romani-Perez et al., 2013; Thorens 

1992), proposing that GLP-1 can have 

additional roles other than the glucose-

lowering effects. 

 

The results of the present study demon-

strated that treatment of Diabetic 

Parkinson's group with exenatide signifi-

cantly improved the striatal dopamine level, 

and decreased the raised catalepsy score in 

a dose dependent way as compared to 

Diabetic Parkinson's group receiving no 

treatment. These results come in line with 

earlier studies that reported that in a rat 

model of Parkinson's disease, GLP-1 

analogue has revealed protection of the 

substantia nigra dopaminergic neurons and 

prevention of basal ganglia dopamine loss 

while preserving motor control (Tan et al., 

2009), (Ji et al., 2016), (Chen et al., 2015). 

Moreover, it was reported that GLP-1 

analogue reverses the biochemical and 

behavioral deficits in a rodent model of 

Parkinson's disease (Kim et al., 2017; 

Rampersaud et al., 2012).  

 

As we mentioned above it was established 

that diabetic hyperglycemia has negative 

neuronal effect; so, GLP-1can produce in 

the neuroprotective effect through its 

glucose-lowering effect. However, we 

investigated also if GLP-1 has a direct 

neuronal effect by studying its effects on 

striatal inflammatory and oxidative stress 

status to conclude if it has its 

neuroprotective effect only indirectly 

through its hypoglycemic effect or also 

through its direct effect on the brain. 

 

GLP-1 agonists can cross the blood–brain 

barrier (Hunter and Holscher 2012), so the 

effect of GLP-1 treatment on cellular 

pathways involved in inflammation and 

oxidation investigated. We found that 

treatment of Diabetic Parkinson's group 

with exenatide produced a block at the 

raised level of lipid peroxidation marker, 

MDA, and the decrease in the activity of 

antioxidant enzyme, SOD, GSH and CAT, 

seen in striatal tissue of Diabetic 

Parkinson's group receiving no treatment in 
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a dose dependent way. Similarly, 

Muscogiuri et al., (Muscogiuri et al., 2017), 

and Spielman et al., (Spielman et al., 2017) 

reported that incretins reduce brain 

oxidative stress through inhibiting the 

accumulation of intracellular reactive 

oxygen species (ROS) and the release of 

nitric oxide (NO), along with increasing the 

expression of superoxide dismutase 1 

(SOD1) and the antioxidant glutathione 

peroxidase 1 (GPx1). 

 

On studying the effect of GLP-1 on striatal 

inflammatory status, we found that GLP-1 

has a definite anti-inflammatory effect, 

since treatment of Diabetic Parkinson's 

group with exenatide significantly 

decreased striatal TNF-α and IL-1β levels 

in a dose dependent way as compared to 

Diabetic Parkinson's group receiving no 

treatment. It was reported that GLP-1 

receptor stimulation attenuate the synthesis 

of the pro-inflammatory cytokine 

interleukin-1β (IL-1β) in the activated 

astrocytes (Iwai et al., 2006). In astrocytes, 

GLP-1 prevented the lipopolysaccharide-

induced IL-1β expression by increase of 

cAMP (Iwai et al., 2006). 

 

The efficacy of  GLP-1 in PD models 

discussed in earlier works from other points 

of view; Li et al., (Li et al., 2016) has 

shown that GLP-1 preserved neuronal cell 

viability, and prevent dopaminergic 

degenerative processes, and the apoptotic 

and neuronal death signaling pathways 

induced by rotenone or similar oxidants. 

This effect can be due to the activation of 

growth factor signaling via the GLP-1 

receptor, that inhibits apoptotic signaling 

(Li et al., 2009). In addition, the GLP-1 

receptor induces up regulation of the anti-

apoptotic protein B-cell lymphoma 2 (Bcl-

2) (Sharma et al., 2014). Bcl-2 acts to 

reserve mitochondrial integrity by 

preventing the loss of mitochondrial 

membrane potential and/or release of pro-

apoptotic proteins such as cytochrome C 

into the cytosol (Harada and Grant 2003). 

Thus, this seems that GLP-1 act by 

improving the course of the pathology 

rather than just exerting a symptomatic and 

acute effect. An additional component of 

the effect mediated by GLP-1 could be a 

trophic effect on remaining dopaminergic 

neurons (Bertilsson et al., 2008). 

 

Recently Erbil et al., (Erbil et al., 2019) 

study reported that GLP-1 is effective in 

partially or fully reversing the effects of 

neuropathological changes related with 

Alzheimer's disease, Parkinson's disease, 

neurovascular complications of diabetes, 

neurotoxic compounds, or vascular 

occlusion. Possible mechanisms that offer 

neuroprotection are enhancing the viability 

of the nerve cells and restoring neurite 

outgrowth by increased neurotrophic 

factors, decreasing apoptosis, decreasing 

the level of pro-inflammatory ingredients, 

reduced oxidative damage, decreased 

cerebral edema, and strengthening blood 

brain barrier.  

 

Conclusion 

The prominent outcome of this study was 

that GLP-1, in addition to its efficacy in 

diabetes management, exerts significant 

neuroprotection effects against neuronal 

damage in PD which worsened with the 

presence of diabetes. The mechanisms 

involved could be correlated to its anti-

inflammatory and anti-oxidative stress 

effects through its ability to suppress the 

inflammatory cytokines expression, and 

increase the activity of the antioxidant 

defense enzymes. The preliminary results of 

the present study propose that GLP-1 can 

exert its neuronal protective effects via a 

direct effect on the brain independently of 

controlling the hyperglycemia and the 

consequent removal of neuronal glucot-

oxicity effect. This proved by increasing the 

neuronal GLP-1 effect in a dose dependent 

manner although the blood glucose return to 

its normal level with the GLP-1 low dose. 

These visions afford the opportunity to plan 

therapeutic approaches directed at specific 

pathogenic mechanisms, including diabetic 

control, anti-inflammatory, antioxidant, and 

insulin-stimulatory drugs that can be 

effective for protection against neurode-

generative central nervous system disorders 

by preventing or stopping the neuronal 

damage progression in the case of diabetes. 

However, it is clear that further basic 

mechanistic and clinical researches required 

before any potential therapeutic benefits 
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may be realized. Hoping this research will 

help people with PD, especially those with 

diabetes, relatively soon. 

  

Limtation 

As far as the results of the present study 

look promising, but longer and larger trials 

needed to fully test the effects of GLP-1 in 

diabetic people with Parkinson's since the 

animal model we've used involves using 

chemicals that damage dopamine-producing 

nerve cells specifically and very quickly. 

This is different to Parkinson's development 

in people that happen slowly, and affects 

other types of nerve cells, not only the 

dopamine-producing ones. 
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